How to deliver low cost energy to cities and municipalities

Delivering low cost energy

Energy security and rising electricity costs are big issues for cities and municipalities across Europe, especially for those that rely substantially on large energy producers and imported fossil fuels for their power generation. Recent falls in the cost of fossil fuels, on the back of declining oil prices, have given some temporary respite but already energy costs are rising.

Matt Drew, MD of Saxlund International says: “Renewables, driven in part by government and EU targets, are helping and as a consequence wind energy in particular has been growing in importance at both a local and national level. This has allowed some municipalities to take back an element of control. However renewables are only a small part of the solution and they aren’t right for everyone. Moreover, large subsidies frequently hide the true cost of the energy produced, nor are they a base load solution – if the wind doesn’t blow and the sun doesn’t shine you still need conventional solutions for generating power consistently.”

So what’s the solution for delivering low cost energy?

Well clearly there isn’t one single answer. But part of the jigsaw and one which is especially relevant to dense urban areas, where there is a high demand for both heating and electricity, is locally generated Combined Heat and Power (CHP). Sometimes referred to as co-generation, CHP integrates the production of electricity together with useable heat in one single, highly efficient process. Capturing waste heat in this way and deploying it for use in district heating and other processes makes CHP up to 80% more efficient than conventional power generation. It means energy costs can be reduced by as much as 20%.

That’s a significant reduction. If you combine CHP with biomass fuels, in particular sustainable timber and waste wood from forest harvesting, then the gains are doubly attractive. Fuel costs are significantly lower and it’s better for the environment. There’s the potential to cut CO2 emissions by some 90% compared to gas.

For parts of Northern & Eastern Europe where forestry is plentiful, the opportunity hasn’t gone unrecognised and local biomass energy solutions in the 2 to 5MW range providing Combined Heat and Power are starting to play an important role in delivering secure, affordable, green energy.

With two year’s successful operation behind them, a new CHP plant in Falköping municipality, Sweden, commissioned by Falbygdens Energi from Saxlund International, is a typical example. The plant supplies district heating and electricity, producing 2.4 MW of electricity and 10 MW of district heating, from locally sourced and sustainable forestry including bark and other forest residues as well as virgin timber.

Kaunas Municipality in Lithuania and the city of Tallin in Estonia will also benefit when new biomass CHP plants come on stream in 2016. Both make use of local renewable timber and follow a strategic partnership between Saxlund International and Axis Industries to deliver state-of-the-art biomass combustion solutions. The 5MW electric CHP plant for Danpower Baltic in Lithuania will be entirely fuelled by renewable timber, while the larger 21.4 MW electric solution in Tallin for energy company Utilitas will burn woodchip combined with 30% peat to deliver 20% of the municipality’s heat demand.

Small-scale biomass fired CHP solutions

There are a number of other reasons why small-scale biomass fired CHP solutions makes sense. They are easier to fund, with considerably less risk than much larger power stations, and quicker to design and build. Importantly the technology is robust and technically proven with dozens of examples especially in Scandinavia. At the scales we are talking about, between 5 and 10 MW electric, local fuel sources are easily managed without the supply chain issues and security of supply that much bigger plants will face.

Waste wood collection and processing

Moreover, the potential to use waste wood and Solid Recovered Fuel (SRF) means urban centres away from forested areas can also benefit, ticking the waste to energy boxes and diverting material from landfill. A typical CHP plant will convert for example between 6,000 to 80,000 tonnes of waste wood diverted from landfill and other low quality waste wood into 170,000MWhr of renewable thermal energy, each year. Importantly this isn’t diverting prime timber resources and it is also helping to create employment opportunities across Europe for waste wood collection and processing.

Saving waste from landfill in the UK

In the UK for example, the construction of a 3.4MW biomass CHP plant at Twinwoods Heat & Power in Bedfordshire, a privately operated power company, is nearing completion. Designed to produce over 27,000 MW hr of electricity and 8000 MW hr of district heating annually, the plant will burn approximately 40,000 tonnes of waste wood from commercial and domestic recycling centres each year, a fuel source that would otherwise be sent to landfill or exported.

Matt Drew says: “Selecting the right technology partner is crucial. The good news is that Saxlund has over 60 years’ experience and can supply everything required to deliver successful energy projects from the biomass combustion furnace, fuel handling solutions through to advanced flue gas treatment and heat recovery.”

To learn more please contact Saxlund International today on +44 (0) 2380 636330 or send your name and contact details to info@saxlund.co.uk, to discuss how we can provide the right solution for your energy requirements.